
Prof. Ryan Newton — SICSA Distinguished Visitor
11–20 June 2014

Ryan R. Newton, Assistant Professor at Indiana University Bloomington, visited Scot-
land between 11th and 20th June 2014. He was hosted by Prof. Phil Trinder and Dr.
Patrick Maier at the University of Glasgow. The main purpose of the visit was to ex-
plore the potential for collaboration between Ryan Newton’s research group at Indiana
and the parallel Haskell research community in Scotland.

During his stay, Prof. Ryan Newton visited four different SICSA universities for a
day each, engaging in discussions about parallel programming language research with
academic and research staff. He also gave three seminar talks and participated in a
hackathon. Details about these activities are listed below; abstracts of the talks can be
found at the end of this report.

• Design Frontiers in Parallel Languages: The Role of Determinism. Seminar
at the University of St Andrews, 12th June, hosted by Dr. Edwin Brady.

• Evolving the Parallel Haskell Ecosystem. Hackathon at Heriot-Watt Univer-
sity, 16th June, hosted by Dr. Hans-Wolfgang Loidl.

• Stream-processing for Functional Programmers. Keynote at the Scottish Pro-
gramming Languages Seminar, 18th June, at the University of Glasgow.

• Design Frontiers in Parallel Languages: The Role of Determinism. Seminar
at the University of Edinburgh, 20th June, hosted by Prof. Murray Cole.

The hackathon on 16th June, attracting 9 participants from Heriot-Watt and Glasgow,
was a unique opportunity to discuss in depth future collaboration on parallel pro-
gramming language implementation and infrastructure. Among the topics discussed
were the following; further topics may be gleaned from the whiteboard photos1 on the
hackathon web page.

• A common abstract API for parallel Haskell DSLs, with the ultimate goal of
building composable parallel DSLs.

• A library of parallel data structures for Haskell, similar to parallel collections in
Scala.

• Sharing of benchmarks between systems. This effort aligns with the upcoming
3rd phase of the SICSA multicore challenge.

• Infrastructure required for nightly regression benchmark runs, and sharing the
necessary software stack.

• Techniques to implement/improve distributed work stealing.

Overall, this visit was very productive, and will shape the work carried out in the par-
allel Haskell research groups at Glasgow and Heriot-Watt. The discussed exchanges of
APIs, libraries and benchmarks offer concrete opportunities for collaboration, and the
upcoming 3rd phase of the multicore challenge provides a good opportunity to compare
the results.

1http://www.dcs.gla.ac.uk/~pmaier/Hackathon-2014-June-16/

1



Design Frontiers in Parallel Languages: The Role of Determinism (seminar)

Constraints can be a source of inspiration; their role in creative art forms is well-
recognized, with poetry as the quintessential example. We argue that the requirement
of determinism can play the same role in the design of parallel programming languages.
This talk describes a series of design explorations that begin with determinism as the
constraint, introduce the concept of monotonically-changing concurrent data structures
(LVars), and end in some interesting places — flirting with the boundaries to yield
quasideterminism, and revealing synergies between parallel effects, such as cancela-
tion and memoization, when used in a deterministic context.

Our goal is for guaranteed-deterministic parallel programming to be practical and
efficient for a wide range of applications. One challenge is simply to integrate the
known forms of deterministic-by-construction parallelism, which we overview in this
talk: Kahn process networks, pure data-parallelism, single assignment languages, func-
tional programming, and type-effect systems that enforce limited access to state by
threads. My group, together with many others around the world, are developing li-
braries such as LVish and Accelerate that add these capabilities to the programming
language Haskell. It is early days yet, but it is already possible to build programs
that mix concurrent, lock-free data structures, blocking data-flow, callbacks, and GPU-
based data-parallelism, without ever compromising determinism or referential trans-
parency.

Stream-processing for Functional Programmers (seminar)

Functional programming and stream-processing have shared history — from early
work on dataflow architectures, VAL, and SISAL, to Haskell’s use of stream-based IO
(before monads) or the modern-day resurgence of Haskell stream libraries (iteratees,
pipes, conduit). These days, "streaming" can mean a lot of things; StreamIt, based
on synchronous-dataflow, has totally ordered streams and will not duplicate stateful
stream processors, whereas Apache Storm makes the opposite decisions. The first part
of this talk will overview this broad landscape.

We argue that the degree of dynamism (e.g. in data-rates and stream topologies)
is the major axis along which various stream technologies are differentiated. In the
second part of this talk, we describe our past and ongoing work on navigating this
spectrum, by developing technologies that leverage regularities where they occur, but
tolerate dynamism. We have studied profile-driven program partitioning, and other
compilation topics, and our current thrust for developing stream DSLs overlaps heavily
with work on data-parallel DSLs (e.g. Accelerate).

2


