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Abstract
As demand for computing resources continues to rise, the increas-
ing cost of electricity and anticipated regulations on carbon emis-
sions are prompting changes in data center power systems. Many
providers are now operating compute nodes in microgrids, close
to renewable power generators and energy storage, to maintain
full control over the cost and origin of consumed electricity. Re-
cently, new co-simulation testbeds have emerged that integrate
domain-specific simulators to support research, development, and
testing of such systems in a controlled environment. Yet, choosing
an appropriate battery model for data center simulations remains
challenging, as it requires balancing simulation speed, realism, and
ease of configuration.

In this paper, we integrate and analyze four different battery
models for data center scenarios within the co-simulation frame-
work Vessim. The results show that linear models, which consider
inefficiencies and power limits, closely match the behavior of com-
plex physics-based models in short-term experiments while offering
faster execution not requiring knowledge on electrochemical reac-
tions and circuit-level dynamics. In contrast, simple, lossless models
fail to accurately represent complex performance and provide no
runtime advantage.
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1 Introduction
As the adoption of modern data-intensive technologies such as
artificial intelligence continues to accelerate across industries, the
need for computational power is rising steadily [9, 26], leading to
increased power usage of today’s hyperscale data centers [13, 16].
Recent work shows that improvements in hardware and software
efficiency is unlikely to alleviate future power demands [4, 13, 16],
which puts pressure on operators to find other ways to decrease
their carbon footprint with potential carbon pricing mechanisms
on the horizon [5, 6]. These developments have shifted the focus
towards a new paradigm called carbon-aware computing in both
academia [2, 11, 18] and industry [7, 12, 15, 17], aiming to align the
power usage of computing resources with local power production
of renewable energy sources. This is made possible due to the fact
that many computing workloads are inherently flexible in both
location and time of execution, allowing them to be distributed
across datacenters and scheduled for execution at times.

For the deployment of such approaches, there is a necessity to
design interfaces, allowing interactions between computing and
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power systems. Because only large industrial players have the ca-
pacity and budget to carry out their design experiments on real
hardware [18], recent work introduced Vessim [23] as a testbed for
carbon-aware systems, enabling applications to gain visibility and
control over a co-simulated microgrid.

Because of the rather volatile nature of renewable energy sources
like solar and wind, the energy output of localized power systems
will fluctuate over time, which makes the use of energy storage
systems such as batteries necessary to deal with upcoming imbal-
ances between demand and supply side [21]. Thus far, however,
the opportunities of modeling battery systems in such testbeds are
severely limited. This is in part due to the very little research that
has been done on determining suitable battery models for various
simulation use cases, even though there is a big trade-off between
simple and efficient models that lack any physical properties, and
physics-based models that are hard to parameterize and slow in
their execution.

In this work, we therefore aim to specify the interfaces that are
necessary to integrate battery models of different complexity into a
microgrid co-simulation, and analyze, how these models compare.
Our contributions are:

• we extend the co-simulation framework Vessim to enable
step-wise execution of battery simulations

• we implement three new battery models within Vessim on
top of the existing simple battery model

• we analyze the behavior and runtime of all four models in
simulated scenarios

2 Battery Simulator Integration
Vessim [23] allows users to define individual microgrids to represent
the power systems of computing infrastructure like data centers,
utilizing the Mosaik co-simulation framework [19]. Each microgrid
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Figure 1: Co-simulation architecture for step-wise execution
of battery models, based on Vessim [23].
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can consist of multiple simulator responsible for modeling genera-
tors, consumers, and energy storage as well as user-defined con-
trollers, which can provide applications visibility and control over
the power system through software-in-the-loop simulation [25].

This work refines the existing co-simulation architecture to in-
clude an energy storage interface, energy management policies, and
a connection between the controllers and the storage simulator, en-
abling control of the simulated battery system during runtime. The
resulting architecture of a Vessim microgrid is shown in Figure 1.

The Storage interface standardizes the used battery model, al-
lowing for charging and discharging operations through an update
function, taking the power delta and the duration of the (dis-)charge,
and returning the energy that was stored/discharged. A Storage
has a Battery Management System (BMS) as part of the model to
not allow batteries to be used in ways that would be prevented
by an actual BMS like over- or undercharging, and to capture the
battery’s key metrics like State-of-Charge (SoC).

The MicrogridPolicy object manages the balance of the re-
ceived power-delta, and lets users define rules for storage, exchange
of energy with the large utility grid, and curtailment. At every sim-
ulation time-step, the policy instructs the Storage to (dis-)charge
at a certain rate for a specific time according to the given rules, and
computes the net energy exchanged with the grid, thus separating
the management of grid and storage from the battery model itself.

By passing the battery’s state and the exchanged grid delta to
the controllers, and allowing the tweaking of BMS and policy pa-
rameters during runtime via the Mosaik scheduler, this architecture
enables visibility and control over the battery system.

3 Battery Models
We compared four different mathematical models of rechargeable
lithium-ion battery packs in the extended Vessim framework by
parameterizing them to represent a group of INR21700 M50 cells.

(1) The SimpleBattery model was already implemented in Ves-
sim, and simulates a basic, lossless battery that has a fixed
capacity, and does not consider any inefficiencies or physical
properties of a battery pack.

(2) The CLCBattery implements the C-L-C model as described
by Kazhamiaka et al. [14]. It is a simple linear model for sin-
gle lithium-ion battery cells, but considers properties such
as (dis-)charging inefficiencies and power limits. This model
is also used by the Carbon Explorer framework [1]. Both
this and the SimpleBattery model have been parameterized
using the cells’ product specification and PyBaMM simula-
tions [20].

(3) The PybammBattery uses the PyBaMM framework [20] to
simulate a single lithium-ion cell that behaves according to
the Single Particle Model, which takes the electrochemical
processes inside a battery into account. The computation is
scaled by the number of cells, and the parameterization for
the modeled cell stems from Chen et al. [8].

(4) Finally, the LiionBatteryPack models the behavior of a
full lithium-ion battery pack, where all individual cells are
again emulated using PyBaMM’s Single Particle Model, and
the battery pack’s circuit is solved using methods of the
Liionpack framework [22].

4 Experimental Results
Besides different scenarios for comparing e.g. the models’ speed
of charge (to be presented at the workshop), we conducted a set
of experiments in a more realistic setting, representing the power
system of a small data center over two days. The scenario simulates
servers with constant power consumption powered by a solar panel,
using solar radiation data in Berlin from June 2021. Batteries are
discharged to a minimum SoC of 30% to ensure operation during
grid outage. Figure 2 depicts the resulting SoC over time of the
different models during this experiment.
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Figure 2: SoC Progression of the models during experiment.

We observe, that the SimpleBattery fails to accurately represent
the battery’s SoC, especially for charging at an almost full state,
while also providing inaccurate estimations of exchanged grid en-
ergy. The PybammBattery and the LiionBatteryPack experiments
exhibit that the circuit’s power losses have little impact on the
results in this experiment. Additionally, these models are hard to
configure and analyze, requiring knowledge electrochemical re-
actions and circuit-level dynamics. Compared to this, the C-L-C
model—given correct parameterization—accurately represents a
lithium-ion cell’s behavior in short-term experiments.

We analyze the models’ execution time on a GCP C3 node. The
SimpleBattery and CLCBattery show similar execution times due
to their linearity, with a median time-step of the PybammBattery
taking around 40 times longer. Compared to the other models, the
execution time of the LiionBatteryPack scales linearly with the
number of cells, whereas the execution time is nearly 500 times
higher than for the simplest model for a battery pack of 256 cells.

5 Outlook
As a next step, we aim to extend our analysis by incorporating
recent battery degradation models [10], which estimate battery
lifetime based on factors like temperature, state of charge, depth-of-
discharge, and (dis)charge rates. Integrating these models into data
center co-simulations can play an important role in control strate-
gies and the planning of future investments. Furthermore, we plan
to apply our battery simulator integration in systems research, for
example, in the development and testing of energy-aware federated
learning systems with battery-powered clients [3, 24].

Future work should aim to establish reliable methods for bench-
marking high-level battery models against real battery systems
used in data centers. This is a challenging task, due to the inherent
uncertainties in accurately estimating the SoC in physical batteries.
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