
Green Metrics Tool: Measuring for fun and profit
Geerd-Dietger Hoffmann

Green Coding Solutions
Berlin, Germany

didi@green-coding.io

Verena Majuntke
HTW

Berlin, Germany
verena.majuntke@htw-berlin.de

Abstract
The environmental impact of software is gaining increasing atten-
tion as the demand for computational resources continues to rise.
In order to optimize software resource consumption and reduce
carbon emissions, measuring and evaluating software is a first es-
sential step. In this paper we discuss what metrics are important
for fact base decision making. We introduce the Green Metrics Tool
(GMT), a novel framework for accurately measuring the resource
consumption of software. The tool provides a containerized, con-
trolled, and reproducible life cycle-based approach, assessing the
resource use of software during key phases. Finally, we discuss GMT
features like visualization, comparability and rule- and LLM-based
optimisations highlighting its potential to guide developers and
researchers in reducing the environmental impact of their software.

1 Introduction
The significance of the environmental impact of software and hard-
ware has grown in recent years [12]. With the increasing demand
for computational resources [10], the reduction of such and associ-
ated carbon emissions becomes progressively important. Currently
8–10% of total electricity production [11] is used by the information
and communication infrastructure. With new AI technology this is
projected to further increase [8].

In order to optimize software, the measurement and evaluation
of resource usage is the first essential step. In this paper we (1) dis-
cuss metrics which are required to accurately assess the resource
usage of software. (2) We present a novel framework, the Green
Metrics Tool, specifically designed to facilitate the precise measure-
ment of metrics across different operating systems and along the
entire software life cycle such as installation, runtime, and removal.
(3) Lastly, we discuss the visualization of data and optimization rec-
ommendations the GMT provides to assess and improve resource
usage. All tools and systems are published open source[18] under
the GNU Affero General Public License[1].

2 Related Work
The measurement of resource consumption and performance has
been an area of active research since the inventions of computers.
Early approaches primarily focused on hardware-level measure-
ments, utilizing specialized equipment to monitor energy usage in
real-time [7][22]. However, these methods were often impractical
for widespread adoption due to the need for expensive hardware
and the complexity of setup [4][20]. Other tools like Greenframe.io
[2], Kepler [3], Scaphandre [14] are geared towards assessing the
general energy consumption but do not focus on fine grained bench-
marks.

LOCO ’24, December 3, 2024, Glasgow, Scotland, UK
2024.

3 Challenges and Metrics
The accurate measurement of software resource consumption is
a complex task due to the inherent variability in system behav-
ior and the information required to assess environmental impact.
The precision of any measurement is highly dependent on the sys-
tem environment, i.e., hardware specifications, operating system
configuration, and background processes. While CPU energy con-
sumption is often the primary measurement focus - likely due to the
availability of tools such as Intel’s Running Average Power Limit
(RAPL) - this metric alone is insufficient for a holistic assessment
as not all problems are CPU bound. In our analysis we identified 15
metrics, e.g., thermal characteristics, disk/network activity, memory
utilization, and execution time to name a few. Each of these param-
eters contributes to a fuller understanding of the environmental
impact of software. Moreover, certain system-level inefficiencies,
such as resource overprovisioning, have to be considered. Accu-
rate measurements are essential for distinguishing the effects of
code edits, as inaccuracies can lead to incorrect conclusions and
misguided optimization efforts.

4 System Architecture
The core objective of the GMT is to enable highly accurate re-
producible measurements. The architecture overview is shown in
Figure 1. To achieve reproducibility and ensure a controlled and
isolated environment, the tool employs containerization technol-
ogy (Docker [15]) to orchestrate the measurement environment.
By using containers, the GMT standardizes the testing scenario,
reducing the variability introduced by different system configura-
tions and environments enabling precise measurements for all parts
of the system, including network traffic. A configuration is used,
modeling how the tool is deployed, shown as Architecture Setup.
Furthermore, the specification of a usage scenario modeling how
the system is used (shown as Flow) is required. Since this is also
configured in a container, it can be tailored to whatever is most suit-
able for the software being benchmarked like curl[21], Puppeteer[9]
or Playwright[16]. The tool also offers an interactive mode which is
meant for logging resource consumption in deployed systems. This
is used to benchmark running AI systems, for example[13]. The
tool also includes a web fronted and an optimisation engine which
are described in section 5. Further there is a comprehensive API to
extract the benchmark data.

The GMT utilizes a range of Metrics Reporters which are small,
specialized, configurable programs that log performance metrics
depending on the machine the benchmark is executed on. These re-
porters collect data on energy consumption, CPU utilization, mem-
ory usage, various temperature sensors and other relevant param-
eters, providing a comprehensive view of the software’s environ-
mental impact. Notably, the GMT is designed to minimize its own



LOCO ’24, December 3, 2024, Glasgow, Scotland, UK Geerd-Dietger Hoffmann and Verena Majuntke

Figure 1: The GMT Architecture

Frontend Optimisation
Engine APIGMT Core

Measures

Metrics Reporters

Memory 
AC Power
DC Power
Network Traffic
CPU %
CPU /DRAM Energy

Architecture Setup

Dockerfiles
Docker Compose
Kubernetes

Flow

Shell Scripts
Puppeteer E2E
Selenium E2E
Unit Tests
Benchmarks
Session Replays

Orchestrates

Docker containers

System
Runner

interference during the benchmarking process. While the bench-
mark is running, the tool refrains from performing any processing,
writing the collected data directly to a file. This design choice was
empirically validated to impose minimal overhead (< 1%), ensuring
that the measurement process itself does not skew the results.

To support sharing specialized measurement hardware, large-
scale periodic benchmarking and avoiding the pitfalls of consumer
hardware, the Green Metrics Tool offers a cluster deployment op-
tion. This enables benchmarking jobs to be run on certain signals
like a git commit or periodic measurements of resource consump-
tion over the development time. It also enables the use of expensive
specialized hardware, required for precise measurements, as multi-
ple people can share the same physical machine.

4.1 System Calibration and Pre-Measurement
Checks

To further enhance measurement accuracy, the GMT performs
system checks before initiating the benchmarking process. One
critical factor considered is the CPU temperature, as fluctuations
in temperature can significantly impact energy consumption read-
ings. It is also important to account for temperature changes over
time as this overhead needs to be accounted for through cooling.
Additionally, the GMT can disable CPU features, such as Turbo
Boost and dynamic frequency scaling as they can introduce vari-
ability in performance metrics. Another critical aspect of the GMT’s
methodology is a calibration script which measures the baseline
resource utilization and temperature of the system in its idle state,
establishing a reference point for subsequent measurements.

4.2 NOP Linux and Interrupt Reduction
To mitigate the impact of operating system-induced variability
on measurements, the GMT integrates with NOP Linux [19], a
specialized Linux flavour designed to minimize system OS activity.
Operating system interrupts can disrupt the measurement process
by consuming CPU cycles. This alters energy consumption patterns
as most measurement devices report on a per core or whole machine
level. NOP Linux disables these services providing a more stable
environment for the measurements while keeping the system as
close to an off the shelf system as possible.

4.3 Lifecycle Assessment and Comprehensive
Measurement

The GMT’s approach to software measurement encompasses the
entire software life cycle, from initial installation to eventual re-
moval. This holistic view allows developers to make data-driven
decisions that reduce the environmental impact of their software
along the life cycle. The life cycle stages considered by the GMT in-
clude Baseline, which is the measurement of the system’s idle state
to establish a reference point; Installation, involving the evalua-
tion of the resource utilization during the software installation and
build process; Boot, assessing resource characteristics during the
software’s startup phase; Idle, measuring the software’s behavior
when it is running but not actively being used; Runtime, analyz-
ing the software’s resource consumption during active use; and
Removal, evaluating the impact of the software’s uninstallation
on the system.

5 Data Visualization and Optimization
Recommendation

The GMT includes an interface for data visualization and compari-
son allowing users to explore collected data in detail, facilitating
comparisons between different versions or configurations. The com-
parison view is particularly useful for identifying changes that may
have led to resource improvements or regressions. By providing a
clear and intuitive visualization, the GMT empowers developers to
make informed decisions about how to optimize their software.

The GMT also offers optimization recommendations based on
the collected data. These recommendations are generated after the
analysis of the software across the different life cycle stages. For
this purpose, a rule based system looks at the values and flags ab-
normalities like over provisioning of resources, long boot times,
low IPC counts, high page faults, etc. A configurable external LLM
(Llama[5], ChatGPT[17], Mistral[6], etc.) is prompted for improve-
ment recommendations for code segments which have shown to
have a high resource usage. In this step the code segment is copied
and a prompt is created queering the LLM to try to "improve" this
segment. There is also the option for an LLM to "rate" code seg-
ments and suggest improvements. This is done by prompting the
LLM with the respective code segments.

6 Conclusion and Future Work
The Green Metrics Tool represents a significant advancement in
the field of sustainable software development. By providing pre-
cise, reliable measurements and minimizing interference during
the benchmarking process, the GMT enables developers to opti-
mize their software based on accurate and comprehensive data.
The integration of containerization, NOP Linux, and extensive pre-
measurement checks ensures that the tool can deliver consistent
and reproducible results. Moreover, the GMT’s lifecycle-based ap-
proach to software assessment and its robust data visualization
capabilities make it an invaluable resource for developers seeking
to reduce the environmental impact of their software. Future work
includes extending the GMT to have more recommendations, more
reporters and finer grain analytics. As the demand for sustainable
software continues to grow, tools like the GMT will play a crucial
role in helping developers meet these challenges.



Green Metrics Tool: Measuring for fun and profit LOCO ’24, December 3, 2024, Glasgow, Scotland, UK

References
[1] 2007. GNU Affero General Public License v3.0. https://www.gnu.org/licenses/

agpl-3.0.en.html.
[2] 2024. Greenframe - Measure the Carbon Impact of Your Web Applications.

https://www.greenframe.io/.
[3] 2024. Sustainable Computing - Measuring and Reducing the Environmental

Impact of Computing. https://sustainable-computing.io/.
[4] David Abdurachmanov, Peter Elmer, Giulio Eulisse, Robert Knight, Tapio Niemi,

Jukka K Nurminen, Filip Nyback, Gonçalo Pestana, Zhonghong Ou, and Kashif
Khan. 2015. Techniques and tools for measuring energy efficiency of scientific
software applications. Journal of Physics: Conference Series 608, 1 (apr 2015),
012032. https://doi.org/10.1088/1742-6596/608/1/012032

[5] Meta AI. 2024. LLaMA Language Model. https://ai.facebook.com/blog/large-
language-model-llama-meta-ai/. Accessed: 2024-09-25.

[6] Mistral AI. 2024. Mistral AI Official Website. https://mistral.ai. Accessed:
2024-09-25.

[7] Frank Bellosa. 2000. The benefits of event: driven energy accounting in power-
sensitive systems. In Proceedings of the 9th Workshop on ACM SIGOPS European
Workshop: Beyond the PC: New Challenges for the Operating System (Kolding,
Denmark) (EW 9). Association for Computing Machinery, New York, NY, USA,
37–42. https://doi.org/10.1145/566726.566736

[8] Adrien Berthelot, Eddy Caron, Mathilde Jay, and Laurent Lefèvre. 2024. Esti-
mating the environmental impact of Generative-AI services using an LCA-based
methodology. Procedia CIRP 122 (2024), 707–712. https://doi.org/10.1016/j.procir.
2024.01.098 31st CIRP Conference on Life Cycle Engineering.

[9] Google Developers. 2024. Puppeteer Documentation. https://pptr.dev/. Accessed:
2024-09-25.

[10] World Economic Forum. 2024. Data growth drives ICT energy innova-
tion. https://www.weforum.org/agenda/2024/05/data-growth-drives-ict-energy-
innovation/ Accessed: 2024-09-27.

[11] Erol Gelenbe. 2023. Electricity Consumption by ICT: Facts, trends, and mea-
surements. Ubiquity 2023, August, Article 1 (Aug. 2023), 15 pages. https:
//doi.org/10.1145/3613207

[12] Udit Gupta, Young Geun Kim, Sylvia Lee, Jordan Tse, Hsien-Hsin S. Lee, Gu-Yeon
Wei, David Brooks, and Carole-Jean Wu. 2021. Chasing Carbon: The Elusive
Environmental Footprint of Computing. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). 854–867. https://doi.org/10.
1109/HPCA51647.2021.00076

[13] Geerd-Dietger Hoffmann and Verena Majuntke. 2024. Improving Carbon Emis-
sions of Federated Large Language Model Inference through Classification of
Task-Specificity. (2024).

[14] hubblo org. 2024. Scaphandre: An Energy Consumption Monitoring Agent.
https://github.com/hubblo-org/scaphandre.

[15] Docker Inc. 2024. Docker. https://www.docker.com/
[16] Microsoft. 2024. Playwright Documentation. https://playwright.dev/. Accessed:

2024-09-25.
[17] OpenAI. 2024. ChatGPT. https://openai.com/chatgpt/. Accessed: 2024-09-25.
[18] Green Coding Solutions. 2024. Green Metrics Tool: A Tool to Measure the

Environmental Impact of Software. https://github.com/green-coding-solutions/
green-metrics-tool.

[19] Green Coding Solutions. 2024. NOP Linux: Reducing Interrupts for Accurate
Energy Measurements. https://www.green-coding.io/blog/nop-linux/

[20] Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. 2008. Energy Aware Consol-
idation for Cloud Computing. In USENIX HotPower’08: Workshop on Power Aware
Computing and Systems at OSDI (usenix hotpower’08: workshop on power aware
computing and systems at osdi ed.). USENIX. https://www.microsoft.com/en-
us/research/publication/energy-aware-consolidation-for-cloud-computing/

[21] Daniel Stenberg. 2024. curl – Command Line Tool and Library for Transferring
Data with URLs. https://curl.se/. Accessed: 2024-09-25.

[22] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee. 1996.
Instruction Level Power Analysis and Optimization of Software. Springer US,
Boston, MA, 139–154. https://doi.org/10.1007/978-1-4613-1453-0_9

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.greenframe.io/
https://sustainable-computing.io/
https://doi.org/10.1088/1742-6596/608/1/012032
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/
https://mistral.ai
https://doi.org/10.1145/566726.566736
https://doi.org/10.1016/j.procir.2024.01.098
https://doi.org/10.1016/j.procir.2024.01.098
https://pptr.dev/
https://www.weforum.org/agenda/2024/05/data-growth-drives-ict-energy-innovation/
https://www.weforum.org/agenda/2024/05/data-growth-drives-ict-energy-innovation/
https://doi.org/10.1145/3613207
https://doi.org/10.1145/3613207
https://doi.org/10.1109/HPCA51647.2021.00076
https://doi.org/10.1109/HPCA51647.2021.00076
https://github.com/hubblo-org/scaphandre
https://www.docker.com/
https://playwright.dev/
https://openai.com/chatgpt/
https://github.com/green-coding-solutions/green-metrics-tool
https://github.com/green-coding-solutions/green-metrics-tool
https://www.green-coding.io/blog/nop-linux/
https://www.microsoft.com/en-us/research/publication/energy-aware-consolidation-for-cloud-computing/
https://www.microsoft.com/en-us/research/publication/energy-aware-consolidation-for-cloud-computing/
https://curl.se/
https://doi.org/10.1007/978-1-4613-1453-0_9

	Abstract
	1 Introduction
	2 Related Work
	3 Challenges and Metrics
	4 System Architecture
	4.1 System Calibration and Pre-Measurement Checks
	4.2 NOP Linux and Interrupt Reduction
	4.3 Lifecycle Assessment and Comprehensive Measurement

	5 Data Visualization and Optimization Recommendation
	6 Conclusion and Future Work
	References

