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We introduce Terracorder, a prototype multi-sensor device that uses
collaborative on-device scheduling to improve its resource usage
and extend its lifetime. The Kunming-Montreal Global Biodiver-
sity Framework sets ambitious targets for 2030, including entirely
halting human-induced species extinctions. Achieving these re-
quires comprehensive data on global biodiversity patterns, which
can only be obtained through in-situ distributed sensor networks.
However, these multi-device networks are constrained by battery
lifetimes, must gather rich data from power-hungry sensors, and
yet need to be deployed in remote environments for long periods.
Terracorder offers a low-carbon approach to long-term biodiversity
monitoring, facilitating comprehensive data collection at minimal
environmental impact.
1 Introduction

The low-power operation of battery-powered or energy-harve-
sting sensors is vital for long-term networked deployments. This is
especially important for biodiversity monitoring networks, which
are often deployed in remote, infrastructure-scarce environments,
yet must gather rich data from power-hungry sensors (i.e., cameras
and microphones). Consequently, biodiversity monitoring devices
face a trade-off between data quality and coverage [18, 14, 2]; single-
sensor devices [6] are cost-effective and low-power but offer limited
data richness, while multi-sensor devices provide richer data but are
generally expensive and power-hungry. We introduce Terracorder,
a versatile multi-sensor device supporting low-power operation via
adaptive scheduling. The application of biodiversity monitoring
provides a unique opportunity here; learning schedules for events
of interest (animal vocalizations, feeding activity, etc.) can not only
help with optimizing power usage, but also generate large-scale
information useful for conservationists.

Various strategies for adaptive scheduling include context rule-
basedmethods [13], genetic algorithms [5], probabilistic approaches
for estimating event likelihoods [8], and reinforcement learning-
based schedulers [7]. The latter excel in the absence of predefined
event models, especially if deploying many sensors for long du-
rations, as event patterns vary and performance can degrade if
scheduling isn’t regularly fine-tuned. However, learning-based
approaches for network-wide scheduling generally need feder-
ated/centralized coordination [11].

We instead look at on-device scheduling for event-driven net-
works, using low-power collaboration between neighboring de-
vices to minimize redundancy. We detail a functional Terracorder
prototype, including camera, microphone, and PIR, and evaluate
its operational lifetime using real-world biodiversity data, power
measurements, and a learning-based scheduler. Whilst initially iso-
lated/standalone, its implementation lays the groundwork for a
large-scale networked approach.

2 Prototype and Results
PrototypeDesign.Our Terracorder prototype is built on an ESP32s3-
variant1, and features ultra-low deep-sleep consumption of ∼19𝜇A
(with 3.7V supply). This is much lower than other development
boards with similar capacity, including other ESP32 variants.

The prototype also includes built-in power management features,
such as a LiPo/LiIon battery charger IC and fuel gauge, supporting
battery health monitoring and time-to-empty/full battery estima-
tion along with a DC input to source reliable renewable power.
The ESP32s3 itself is based on a XTensa SoC, supporting 512KB
of internal SRAM and 16KB RTC SRAM for retaining state over
deep-sleep. The SoC includes a RISC-V/FSM ultra-low-power co-
processor for interfacing with external I2C sensors while its main
processor remains in deep-sleep.

The prototype also includes a 5MP camera2, an omnidirectional
microphone3, and PIR4 sensor. These components were selected
for their low-power operation and use in related biodiversity moni-
toring applications [3]. The PIR sensor remains active continuously,
even in deep-sleep, acting as an event-trigger for our camera. The
microphone is our scheduled component, but recording could also
be event-triggered if events are of longer duration.

WiFi is used for transmitting recordings and images.
We measure the current draw of the various device modes using

a high-voltage power monitor capable of 𝜇A-scale measurements5.
The board is supplied at 3.3V via its JST-PH battery connector.

Table 1: Current measurements (3.3V in)

Mode/Operation Current Draw (mA)

Deep-sleep (PIR and RTC active) 0.097
Microphone
- 3s recording 31.57
- 0.1s recording + Goertzel filter 32.34
- 0.1s recording + TFLite inference 33.11

Camera (one activation) 49.33
Transmission (via WiFi)
- 3s audio recording 61.33
- 5MP image 97.73

QL inference 0.031
QL update 0.071

Event Detection and Scheduling. We apply an off-the-shelf bird
vocalization detection model, BirdNET [9], to generate events and
durations from continuous audio recorded in the Sabah rainfor-
est, Borneo6. We address BirdNET false positives by applying a
1https://powerfeather.dev
2Omnivision OV5640
3INMP441
4PaPIR EKMB1103111
5https://www.msoon.com/high-voltage-power-monitor
6The SAFE project

https://powerfeather.dev
https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/OV5640_datasheet.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
https://industrial.panasonic.com/cdbs/www-data/pdf/EWA0000/bltn_eng_ekmb110711_ast-ind-247373.pdf
https://www.msoon.com/high-voltage-power-monitor
https://www.imperial.ac.uk/natural-sciences/research/impact/discovery-and-the-natural-world/safe/
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confidence threshold of 0.7. Users can generate species-specific
thresholds based on expert validation of recorded pilot data to fur-
ther improve detection accuracy [16]. The generated events are
used in building and evaluating our scheduler. These, combined
with our power measurements above, allow us to estimate our
prototype’s battery lifetime in a real-world deployment.

Our scheduler utilizes Q-learning [15], a model-free reinforce-
ment learning approach that builds a Q-table 𝑄 (𝑠, 𝑎) of discrete
state-action values, useful for learning optimal coverage-maximising
schedules on energy harvesting devices [4, 1, 12]. Q-values are the
estimated total discounted reward from taking action 𝑎 in state 𝑠
and then following the optimal, learned policy 𝜋 . The discounted
reward signal is used to update the Q-table:

𝑄𝜋 (𝑠, 𝑎) = 𝑟0 + 𝛾𝑚𝑎𝑥𝑎𝑄𝜋 (𝑠, 𝑎) (1)

𝛾 is a discount factor that balances the importance of immediate
versus future reward. Q-learning inference follows a greedy or
𝜖-greedy policy, which for a given state picks the maximum Q-
value action with probability 1-𝜖 and a random action otherwise.
Given device resources are limited, and the scheduler should incur
minimal overhead, Q-learning’s low memory requirements and
𝒪(𝑛) inference and update are fitting. With hourly periods and 𝐾 =
7 possible actions, the resulting 24x7 Q-table is only 3KB, meaning
multiple Q-tables can be used on one device for the scheduling of
different connected sensors.

We discretize state into 𝑡 periods of fixed activation rate. This can
be done in practice based on observed/expected event patterns and
imposed operational constraints. We also use 𝐾 possible activation
frequencies based on the observed/expected range of event intervals
and durations. Our reward for period 𝑡 is the difference between
the number of positive activations 𝑁𝑝𝑡 (i.e. activations on which
an event is detected) and a weighted sum of negative activations
𝑤1 · 𝑁𝑛𝑡 . The weighting𝑤1 adjusts for scale discrepancies, varying
detection priorities, and can be period-specific based on expected
event patterns.

Q-learning inference and Q-table updates are implemented on-
device to show their negligible overhead. We record continuously
for 0.1s upon activation to detect events; if an event is detected,
recording persists until the event concludes, otherwise the device
returns to deep-sleep until its next scheduled activation. Goertzel
filtering [17] is used for event detection, processing a 0.1s record-
ing (at 16000kHz) with just 0.03s latency, minimally impacting our
device’s lifetime. However, Goertzel, and other filtering-based ap-
proaches detect any event within their range of covered frequencies,
while missing off-frequency ones, potentially resulting in degraded
fine-tuning performance. We therefore also implement an alter-
native integer-quantized one-layer convolutional model for event
detection, using ESP-TFLite-Micro. This model is built on spec-
trograms of 0.1s slices from our Borneo recordings, with event
labels generated using BirdNET, and reaches ∼70% accuracy on
unseen event data; however, no validation is done on the positive
slices. ESP-DSP is used for extracting spectrograms from buffered
recordings on-device.

The schedule is learned over 24 hours of detections, and evalu-
ated over the following 24 hours, to imitate day-by-day learning
with minimal pre-deployment data. We compare our scheduler
to a number of fixed baselines that activate the device every 𝑛

seconds, irrespective of the current period. These baselines are
commonly used in real-world deployments, alongside continuous
periodic recording of fixed duration [6]. More complex algorithmic
schedules (e.g. based on known event patterns) could also be im-
plemented; although these are non-adaptable, they can be used for
Q-table initialization to accelerate convergence.

Figure 1: Fixed schedules vs. Q-learning
Performance and Battery Lifetime. The device’s lifetime is calcu-
lated using a 13400mAh LiPo/Li-Ion battery. We model the average
operating current based on power measurements of the various
device modes, including Q-learning/TFLite inference and update,
and the number of detected events. We assume that each detected
event triggers a camera activation, resulting in a much higher acti-
vation rate than observed for bird/mammal detection in the Sabah
rainforest [10], followed by a data transmission. We also do not par-
allelize operations. This gives us an overall relatively conservative
estimate of battery lifetime.

The figure above summarizes the scheduling outcomes. We cap-
ture a high percentage of events (85.3% vs ∼53.5%) at much reduced
power consumption, extending the device’s lifetime from approx-
imately 0.77 years on a fixed schedule to over a year (1.07 years).
Using TFLite for event detection yields similar results (1.05 years).
With a renewable power source for recharging, our lifetime bottle-
neck moves from power consumption to device/network resilience.

3 Talk Outline
This note outlines a general event-driven scheduler for isolated

devices. However, comprehensive biodiversity monitoring neces-
sitates large-scale deployments of networked sensors, prompting
further optimization through coordinated scheduling.

We are now exploring a uniquely decentralized, network-centric
approach, focusing on scheduling using ordered device proximity
groups. We’ll cover in our talk how this approach should extend
network lifespan as more devices are deployed by minimizing re-
dundancy and distributing resource usage. This approach should
also enhance network resilience, as devices can dynamically adjust
their schedules if a neighbor fails. We’ll also detail how, given a
sufficiently dense network, devices in proximity can cooperatively
activate each other based on forecasted event patterns/locations,
increasing responsiveness for out-of-schedule and non-stationary
events.

This effort underpins Terracorder – a uniquely low-power, af-
fordable multi-sensor device for biodiversity monitoring – and
facilitates large-scale gathering of rich data essential for supporting
conservation initiatives.
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