
Carbon-Aware Name Resolution
Ryan Gibb

University of Cambridge
ryan.gibb@cl.cam.ac.uk

Patrick Ferris
University of Cambridge

patrick.ferris@cl.cam.ac.uk

Anil Madhavapeddy
University of Cambridge

anil.madhavapeddy@cl.cam.ac.uk

ABSTRACT
The current Internet architecture fails to treat the carbon emissions
associated with networked services as a first-class metric. We pro-
pose extending the DNS with load balancing techniques to consider
the carbon cost of scheduling decisions, and further to actively
wake machines running networked services as a side effect of name
resolution. By extending the DNS, we maintain compatibility with
existing Internet infrastructure, unlocking the ability for existing
applications to be carbon-aware.

1 INTRODUCTION
In a world in the midst of unprecedented climate change, we should
minimise the carbon usage of our networked services, both local
and global. To address this we (1) extend the existing mechanism of
DNS load balancing with carbon-awareness by creating a carbon
scheduling algorithm, and (2) we actively manage the power state of
machines by powering them down when idle and waking them as a
side effect of a name resolution, trading latency and availability for
energy efficiency. Leveraging the DNS to implement these policies
allows them to interoperate with Internet protocols, unlocking
carbon awareness for existing applications.

2 CARBON-AWARE LOAD BALANCING
DNS load balancing is an established way of varying the results
returned by a DNS query according to a policy, often round-robin
scheduling [6]. Routing and load balancing decisions can also be
made in order to (1) minimise latency by providing IP addresses
topologically and geographically close to the requester, (2) maxi-
mize availability by taking machines out of rotation, and (3) hori-
zontally scale services beyond what a single machine could handle
by using multiple machines. Carbon-aware load balancing policies
are well established [11, 13], but are typically realized in the appli-
cation layer which hinders their ease of deployment for existing
services. We propose implementing load balancing policies using
DNS as the mechanism through which domain-specific policies can
be enforced.

An example of such a carbon-aware load balancing policy is
heliotropic resolution – following the sun. The Solar Protocol offers
the ability to host a particular service across geospatially disparate,
solar-powered servers and update DNS record entries based on
local server information like sunshine and battery capacity [5].
However, it exists at the application layer requiring a bespoke
network of solar-powered machines to host Internet services with
each server updating the DNS registry. Instead, we propose hosts
register themselves with the nameserver using a capability-based
RPC system [12], which can then make intelligent load balancing
decisions centrally.

LOCO, 2024
2024.

Client

Nameserver

350 g CO2e/kWh

250 g CO2e/kWh

500 g CO2e/kWh

Figure 1: Carbon load balancing based on carbon intensity
calculations.

Solar-based networks do not scale to the general state of the
modern Internet. Estimating potential solar energy is insufficient
for a truly carbon-aware name resolution given the diverse mix
of sources that constitute a modern energy grid. An individual
machine’s carbon usage can be calculated from its power con-
sumption and the electrical energy’s carbon intensity. The carbon
dioxide equivalent emissions of machine 𝑀 (𝐶𝑀 ) is calculated as
the power used by machine 𝑀 in kilowatt-hours (𝑃𝑀 ) multiplied
by the carbon intensity of the energy used by machine 𝑀 mea-
sured in grams of carbon dioxide equivalent per kilowatt-hour
(𝐶𝐼𝑀 ), 𝐶𝑀 = 𝑃𝑀 × 𝐶𝐼𝑀 . A machine’s power usage depends on
its hardware components, their configuration and the machine’s
current work load. The carbon intensity of the energy grid varies
due to decisions made by the grid operators and available energy
mix which is possible to estimate [7, 9]. An increasing number
of services and APIs are now available that can provide real-time
carbon intensity information including ElectricityMaps [3] and
carbon-intensity.org.uk [4]. There is also a power cost to trans-
ferring data, and a trade-off between distance to a server and the
benefit in greener compute [8, 14].

All these parameters can form the inputs to a scheduling policy
to minimise carbon emissions, that can use DNS load balancing
as the mechanism to be implemented. The best policy will depend
on the application’s performance characteristics, and may even
require predictive modelling of power sources for long-running
stateful flows. Figure 1 shows a nameserver balancing load between
geographically distributed servers, implementing a simple policy
of returning the one with the lowest carbon intensity.

1

https://orcid.org/0009-0009-5702-3143
https://orcid.org/0000-0002-0778-8828
https://orcid.org/0000-0001-8954-2428


LOCO, 2024 Ryan Gibb, Patrick Ferris, and Anil Madhavapeddy

3 WAKE-ON-DNS
The deployment of local networked services allows for low-latency,
reliable, and offline operation. However, this decentralisation means
the energy usage of a machine can’t be amortized across many
services in a mutli-tenant datacentre. Such local services are often
running on idle on machines drawing non-trivial amounts of power
for long periods of time [10]. This can be especially noticeable for
non-public services like a local storage server, which can be idle for
hours or days at a time depending on usage patterns. While power
saving methodologies like low power CPUs, CPU sleep states, and
Advanced Configuration and Power Interface (ACPI) can reduce
this, they can only get us so far.

To address this, we extend carbon-aware name resolution to ac-
tively manage the power state of machines. We first allow machines
to be put into an unpowered mode when idle for long periods of
time. We can’t do this in the DNS as there may be long-running
flows that would be cut short. Instead, we leave this up to the server
administrator or application software to configure, such as after
an idle timeout period with no requests. We rely on a mechanism
to wake the machine up on-demand, which can include: (1) cloud
service provider APIs, (2) networked power supplies trigging a boot
via a power cycle, (3) or the Wake-on-LAN (WoL) protocol. Before
the machine goes to sleep we can register it’s wakeup mechanism
with the nameserver using an RPC interface.

Then, as a side effect of a name resolution for a service hosted
on a machine, we wake the machine up. By specifying a low Time-
To-Live (TTL) for the resource records associated with this name
we can ensure that a name resolution will be the inception of any
network request to the service.

Waking up the machines will take some amount of time, but if
we delay responding to a DNS query until the server is ready we
risk resolvers timing out and returning SERVFAIL. However, if a
client sends a Transport Control Protocol (TCP) handshake to a
machine that isn’t up, yet it may time out, requiring retry logic
on the client side. This is again a tradeoff between availability and
latency and energy efficiency, as a powered-down machine can’t
immediately respond to a request but uses dramatically less power.

Aside from its use for a single machine, this active power man-
agement could be used to better implement load balancing across
redundant servers. To reduce this to the simplest example, assum-
ing a typical power curve two machines at a quarter load could
be combined to one machine at half load, while the other is put to
sleep. If the load exceeds the capacity of one machine, the other
could be reanimated by the carbon-aware load balancer.

The WoL protocol is supported by a Network Interface Card
(NIC) which listens for a particular packet format that contains
the NIC’s MAC address. Due to network configurations restricting
IP broadcast this is typically only reachable on a local network.
Proxy services for WoL exist, however, we can take advantage of
DNS delegation to have the nameserver send WoL packets directly.
Whenever a client queries the sleeping server, its query will be
routed over the public Internet to the nameserver in the server’s
local network, which can then send a WoL packet to the server to
wake it up, and respond as normal to the client’s query, as illustrated
by figure 2. This also works if the client queries from the local
network.

Nameserver

eryNAS

nas.example.org
ery Internet

nas.example.org

ery

Wake

nas.example.org

Local Network

Figure 2: Local and global Wake-on-DNS.

4 OUR TALK
We will explain how the DNS can implement carbon-aware load
balancing policies (2), how name resolution can actively manage
the power state of machines (2), and will also explore how these
mechanisms can enable existing applications to become carbon-
aware.

Web-services. Much of the modern Internet is serving static con-
tent or responding to stateless requests over HTTP. As a result,
such services are easily distributed as any server can be chosen to
respond to the query. With a carbon-aware load balancing algo-
rithm a webserver can be made carbon-aware with no changes to
the client or application. And using active power management, we
can actively scale the number of machines up based on load.

Mailservers. The DNS advertises mailservers with the use of MX
records which return, for a queried domain, a set of mailserver
domain names and their associated priorities [1, 2]. A mailserver
domain can then be resolved to an IP address. Typically, the priory
represents a backup server to use in the case of the higher priority
servers failing. In order to make the Simple Mail Transfer Protocol
(SMTP) carbon-aware the nameserver can modify these priorities
to reflect the carbon intensity of the servers they map too, and put
unused backup servers to sleep until they become required.

Local infrastructure. Many services are better suited to be situ-
ated on a local network instead of in a remote datacenter. However,
this removes the economies of scale and centralised orchestration
that typically comes with a datacenter environment. Consider, a
research group’s compute server that is periodically used for in-
tensive batch processing, but for the majority of its uptime sits
idle utilizing 100 Watts. Using DNS power management we can
minimise the idle power usage of these machines by suspending
them when they’re not active, but keeping them available by wak-
ing them on a DNS request. And by doing this in the DNS, we
interoperate with existing Internet protocols with no modification
to the client or applications.

2



Carbon-Aware Name Resolution LOCO, 2024

REFERENCES
[1] 1986. Mail routing and the domain system. RFC 974. https://doi.org/10.17487/

RFC0974
[2] 1987. Domain names - implementation and specification. RFC 1035. https:

//doi.org/10.17487/RFC1035
[3] 2016. Electricity Maps | Reduce Carbon Emissions with Actionable Electricity Data.

https://www.electricitymaps.com/
[4] 2017. Carbon Intensity. https://carbonintensity.org.uk/
[5] Tega Brain, Alex Nathanson, and Benedetta Piantella. 2022. Solar Protocol:

Exploring Energy-Centered Design. In Computing within Limits. LIMITS. https:
//limits.pubpub.org/pub/solar/release/1

[6] Thomas P. Brisco. 1995. DNS Support for Load Balancing. RFC 1794. https:
//doi.org/10.17487/RFC1794

[7] Dr Alasdair R. W. Bruce, Lyndon Ruff, James Kelloway, Fraser MacMil-
lan, and Prof Alex Rogers. 2021. Carbon Intensity Forecast Method-
ology. https://github.com/carbon-intensity/methodology/blob/
9959aabaa17779f6c507d71c09386c864f8c07ff/Carbon%20Intensity%20Forecast%
20Methodology.pdf

[8] Romain Jacob and Laurent Vanbever. 2023. The Internet of Tomorrow Must Sleep
More and Grow Old. 3, 3 (2023), 27–32. https://doi.org/10.1145/3630614.3630620

[9] Diptyaroop Maji, Ramesh K. Sitaraman, and Prashant Shenoy. 2022. DACF: Day-
Ahead Carbon Intensity Forecasting of Power Grids Using Machine Learning. In

Proceedings of the Thirteenth ACM International Conference on Future Energy Sys-
tems (New York, NY, USA, 2022-06-28) (E-Energy ’22). Association for Computing
Machinery, 188–192. https://doi.org/10.1145/3538637.3538849

[10] David Meisner, Brian T Gold, and Thomas F Wenisch. 2009. PowerNap: Elimi-
nating Server Idle Power. (2009). https://dl.acm.org/doi/pdf/10.1145/2528521.
1508269

[11] Abel Souza, Shruti Jasoria, Basundhara Chakrabarty, Alexander Bridgwater, Axel
Lundberg, Filip Skogh, Ahmed Ali-Eldin, David Irwin, and Prashant Shenoy.
2023. CASPER: Carbon-Aware Scheduling and Provisioning for Distributed Web
Services. In Proceedings of the 14th International Green and Sustainable Computing
Conference. 67–73. https://doi.org/10.1145/3634769.3634812 arXiv:2403.14792 [cs,
math]

[12] Kenton Varda. 2014. Cap’n Proto. https://capnproto.org/
[13] Zhi Zhou, Fangming Liu, Yong Xu, Ruolan Zou, Hong Xu, John C.S. Lui, and Hai

Jin. [n. d.]. Carbon-Aware Load Balancing for Geo-Distributed Cloud Services. In
2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems (2013). 232–241. https://doi.org/10.
1109/MASCOTS.2013.31

[14] Noa Zilberman, Eve M. Schooler, Uri Cummings, Rajit Manohar, Dawn Nafus,
Robert Soulé, and Rick Taylor. 2023. Toward Carbon-Aware Networking. 3, 3
(2023), 15–20. https://doi.org/10.1145/3630614.3630618

3

https://doi.org/10.17487/RFC0974
https://doi.org/10.17487/RFC0974
https://doi.org/10.17487/RFC1035
https://doi.org/10.17487/RFC1035
https://www.electricitymaps.com/
https://carbonintensity.org.uk/
https://limits.pubpub.org/pub/solar/release/1
https://limits.pubpub.org/pub/solar/release/1
https://doi.org/10.17487/RFC1794
https://doi.org/10.17487/RFC1794
https://github.com/carbon-intensity/methodology/blob/9959aabaa17779f6c507d71c09386c864f8c07ff/Carbon%20Intensity%20Forecast%20Methodology.pdf
https://github.com/carbon-intensity/methodology/blob/9959aabaa17779f6c507d71c09386c864f8c07ff/Carbon%20Intensity%20Forecast%20Methodology.pdf
https://github.com/carbon-intensity/methodology/blob/9959aabaa17779f6c507d71c09386c864f8c07ff/Carbon%20Intensity%20Forecast%20Methodology.pdf
https://doi.org/10.1145/3630614.3630620
https://doi.org/10.1145/3538637.3538849
https://dl.acm.org/doi/pdf/10.1145/2528521.1508269
https://dl.acm.org/doi/pdf/10.1145/2528521.1508269
https://doi.org/10.1145/3634769.3634812
https://arxiv.org/abs/2403.14792
https://capnproto.org/
https://doi.org/10.1109/MASCOTS.2013.31
https://doi.org/10.1109/MASCOTS.2013.31
https://doi.org/10.1145/3630614.3630618

	Abstract
	1 Introduction
	2 Carbon-Aware Load Balancing
	3 Wake-on-DNS
	4 Our Talk
	References

