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Data-science is a vital tool in tackling the ongoing climate-

crisis, but it is one that has a significant cost to it also, in

terms of energy used during execution and in terms of signif-

icant hardware investment required to run it. These are then

amplified considerably in the exploratory nature of scien-

tific research.We argue this is because the affordances of the

operating system, particularly filesystems, make little effort

to support reuse of computed artifacts directly or promote

reuse through trusted lineage data.

However, it turns out that many of the userspace inter-

faces exposed by the Linux kernel entirely support a radically

more efficient – a more frugal – model of computation than

is currently the default. In this talk, we explore a new OS

architecture which defaults to deterministic, reusable com-

putation with the careful recording of side effects. This in

turn allows the OS to guide complex computations towards

previously acquired intermediate results, but still allowing

for recomputation when required.

We use these interfaces to build a new Linux userspace

where we put the workflow graph—containing relationships

between tools, provenance and labelling—as the core of a

system that drives how processes, data, and users interact.

Our prototype shell, dubbed Shark, is a data-science first op-

erating environment that is designed to both ensure efficient

use of computation and storage resources, and to make it

easy for non-experts to create pipeline descriptions from end

results post-hoc. It does this by making the lineage graph

of a data-pipeline the key concept that ties everything else

together: by tracking how the data-pipeline evolves from

experimental practice, and tracking what data has already

been built and what hasn’t we can prevent re-execution both

at development and after publication.

1 WASTE IN DATA-SCIENCE
Whilst it is not intrinsic to the domain, we observe that in

practice data-science is often wasteful of resources, driven

in a large part by uncertainty in the process [5]: uncertainty

in data (e.g., which datasets and versions have been used in

the past), uncertainty in code (e.g., who ran which version

of a stage), and uncertainty in the methodology (e.g., which

existing published results can be verified and trusted in the

future). The typical solution to resolve this uncertainty is

expensive re-computation, which causes excess scope 2 and

3 emissions [6].
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Figure 1: The LIFE biodiversity metric pipeline, show-
ing the processing stages and intermediary datasets
required. This pipeline is run for multiple scenarios
and results in around 92 petabytes of image data.

We have seen this first hand being embedded in two large

ecology projects at the University of Cambridge: the LIFE bio-

diversity metric [4] and the PACT forest assessment method-

ology [3]. Both pipelines are large multi-stage workflows

like that shown in Figure 1, where the state of the computing

is larger than a single person’s working set and is distributed

across multiple people with different specialities. Combined

with the need to process petabytes of data and stages that

can take weeks to run, this is a recipe for significant waste.

The current common set of OSs offer no way to query the

lineage graph of results, and so it is easier to re-run a pipeline

than investigate what went before, leading to wastage.

2 AUTOMATED DATA LINEAGE
A data lineage graph [1], that is a DAG of all inputs and

processing stages in a pipeline, serves two purposes for us:

it provides a way to attest what happened to humans, and

it provides a way to a system run time to both execute the

pipeline and to ensure parts already run are not run again.

Whilst data-scientists couldmanually build lineage graphs,

these domain experts are typically focused on the primary



Figure 2: This graph was automatically extracted from
final output of unmodified python scripts that form a
pipeline to calculate species Area of Habitat.

science mission, and the art of what is possible isn’t obvi-

ous [8]. Instead, we believe it should be the system’s job to

capture this as a pipeline like that shown in Figure 1 is built

up.

As a demonstration of how readily this can be done, the

graph shown in Figure 2 shows the execution trace of a sec-

tion of the LIFE pipeline being automatically extracted from

a series of unmodified Python scripts, by injecting code into

their environment, swizzling library calls and then writing a

manifest alongside each output file, which is then picked up

by later stages and propagated until the final manifest has a

record of all the downstream inputs that built that file. No

behaviour change was needed by the data-scientists, to result

in a manifest that documents primary source information

(e.g., downloads from Zenodo), code used (with git commit

IDs), lists of libraries imported, etc.

Whilst this demonstration only works for Python, the

principles in general can be applied to general purpose pro-

gram running in a Linux environment using eBPF [2] which

allows monitoring of syscalls made, and by pushing network

requests through a proxy.

Attestation to humans is made possible by introducing

digital signatures at each stage, with the possibility that an

institution will sign the final result before publishing.

3 SHARK: A LINEAGE FIRST, FRUGAL
DATA-SCIENCE PLATFORM

To push these ideas further, we are building Shark, a data-

science environment that puts data lineage first and ensures

frugal computation by only executing what it knows not to

be already done. This isn’t merely done as a post-hoc artifact

at the end of the process, rather this principle carries through

from initial use to published result.

Shark’s aim is to record the data-science pipeline at the

command level, removing the requirement that data-scientists

learn new languages or libraries to complete their work.

These commands are executed using container environments

appropriate to each command to allow for dependency track-

ing, and use ZFS datasets for storage, to allow for snapshot-

ting and build incremental graphs of the pipeline develop-

ment.

Shark has two key modes of operating: a batch mode and

an interactive mode. In the batch mode we take pipeline de-

scription that is markdown document with a series of code

blocks that describe the pipeline. Using markdown this way

is a form of literate programming [7] that allows the method-

ology of the pipeline to be described alongside the commands

needed to run it, and because the commands don’t rely on

Shark directly, this syntax allows others to hand execute the

pipeline independently should they so wish. Each code-block

has a tag that indicates a particular container environment

to be used, allowing a mixing of say R and Python or what-

ever other tools that data-scientists are familiar with. The

Shark markdown files also have special import clauses that

facilitate the description of primary resources from locations

such as Zenodo or GitHub, encouraging the use of original

resources rather than local copies with no history.

As the pipeline is updated and re-run during its devel-

opment, because Shark knows which containers were used

and the file-system snapshots involved, it can hash these to

understand if it needs to re-run anything or whether it can

use existing results, thus saving the data-scientist time and

reducing emissions.

In the code-blocks we also allow an extended shell syntax

via wild-carding that allow the expression of map/reduce

style stages where Shark can automate parallel execution

of jobs based on earlier results in the pipeline, where in the

command line world tools like GNU parallel would be used.

In the interactive mode, Shark operates like any other in-

teractive shell, offering a command prompt with access to

commands, but as commands are executed, they are split

into those that inspect data, and those that mutate data. If

data mutation is detected, then Shark will snapshot the re-

sult, building up the lineage graph as it goes. At the end of

the interactive session that graph can then be used to find

which stages contributed to the final result, and that graph

can be used as the basis for generating the template Shark

markdown document used for future runs.

4 SUMMARY
Uncertainty in data-science leads to a significant wastage of

energy via scope 2 and scope 3 emissions. We are building

Shark, an inherently frugal environment for data-science

that fosters efficient behaviour by putting automated data

lineage at the core of the computing process, removing that

uncertainty, and thus removing the wastage it causes. Con-

veniently, it turns out that the Linux kernel already supports

many of the features that we need to build such an environ-

ment, meaning that our system is compatible with existing

cloud computing infrastructure.
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