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1 Introduction
Scientists in many fields, including genomics, materials science, and
remote sensing, need to analyse increasing amounts of data [1, 4, 8,
9]. Scientific workflow systems facilitate the automation of such
analyses, enabling scientists to compose pipelines out of black-box
tasks with data dependencies between them. As these workflows
are often used to process large quantities of data, they tend to be
resource-intensive and long-running, leading to significant energy
consumption and, therefore, carbon emissions. Furthermore, the
growing popularity of big data applications has been identified
as a driver for the increasing emissions of the ICT sector [5]. As
such, it is crucial to quantify and understand the carbon footprint
of scientific workflows.

Scientific workflow systems like Nextflow [2], allow for the de-
sign, execution and monitoring of workflows on heterogeneous
clusters.While these systems usually generate detailed performance
traces and logs for executedworkflows, they do not produce a record
of energy consumed or carbon emitted. Consequently, users must
manually monitor power consumption with hardware/software
power meters or, otherwise, use a methodology like Cloud Car-
bon Footprint (CCF)1 or Green Algorithms (GA) [7], which employ
linear power models to translate resource utilisation into energy
consumption. In either case, to translate energy consumed into
carbon emitted, users need a measure of carbon intensity (CI), such
as a yearly average or a more fine-grained metric. Generally, CI
measures the amount of carbon (𝐶𝑂2𝑒) produced per kilowatt-hour
(𝑘𝑊ℎ) of electricity consumed, and varies across different locations,
seasons, and times, depending on the sources generating electricity
and the demand on the grid.

In practice, monitoring power consumption requires the user to
attach a physical power meter or to enable a software-based tool
like Intel’s Running Average Power Limit (RAPL) prior to the execu-
tion of a workflow. Without this step, power consumption can only
be estimated based on coarse-grained resource utilisation metrics.
This is possible using the CCF and GA tooling, but only at reduced
accuracy. Both methodologies assume that energy consumption
scales linearly, which not necessarily holds in practice [6]. More-
over, to build linear power models, the GA methodology relies on
vendor-specified Thermal Design Power (TDP) of assigned compute
resources, a proprietary metric that does not reflect key processor
settings such as processor frequency and does not indicate idle
power consumption. Furthermore, while both methodologies trans-
late power consumption into carbon emissions, they use a static
average value to represent the CI of electricity consumed by the
compute workload, ignoring that CI is often highly variable.

1https://www.cloudcarbonfootprint.org/docs/methodology/
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To address these limitations, we propose Ichnos, a novel and
flexible tool to estimate the carbon footprint of Nextflow work-
flows based on detailed workflow traces, CI time series, and power
models. First, Ichnos takes as input the automatically-generated
workflow trace produced by Nextflow. Use of these traces is an
original contribution, ensuring that users do not need to manually
monitor power consumption and enabling analysis of previously
executed workflows. Next, Ichnos allows users to provide their own
resource power model for utilised compute resources to accurately
reflect processor settings, such as the processor frequency, instead
of solely relying on a linear function. Finally, Ichnos converts es-
timated energy consumption to overall carbon emissions using
fine-grained time-series CI data for each workflow task and only
resorts to coarse-grained yearly averages where high-resolution
location-based CI data are not available. Additionally, Ichnos re-
ports estimated energy consumption and carbon emissions per
task, providing greater granularity than existing methodologies
and allowing users to identify which of their tasks have the largest
footprint to address. We provide the implementation of Ichnos as
open-source2. We demonstrate our tool on traces of two real-world
Nextflow workflows, compare the estimated energy consumption
against RAPL and the GA methodology, and show the tool’s func-
tionality by varying the granularity of provided CI data and varying
the processor frequency settings of assigned compute resources.

2 System Design
Ichnos is a tool that produces an estimate of the operational carbon
footprint from the execution trace of a Nextflow scientific workflow,
using user-configured power and energy data aligning with the
execution. Figure 1 provides an overview of the tool’s design.

In Phase 1, input data are provided by the user in the form
of three items: (1) the workflow trace that includes a task-level
summary of resource usage including the runtime, CPU utilisation
and allocated memory, (2) the power model used to estimate power
consumption for utilised compute resources, and (3) the CI data
which should be fine-grained time-series data, if available, or instead
a coarse-grained average. To provide an accurate estimate of energy
consumption, the user can provide a power function or regression-
based model to reflect processor settings.

In Phase 2, resource usage data are extracted from the workflow
trace for each task, and the energy consumption is estimated using
the provided power model. Subsequently, the energy consumption
per task is translated into carbon emissions using the provided CI
data. This estimates operational carbon emissions by aligning the
tasks of potentially long-running workflow applications with CI
data matching the specific execution times. These estimations are

2https://github.com/westkath/ichnos
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Figure 1: High-level design of the Ichnos Carbon Footprint
estimator system with per-task power and emissions estima-
tion, based on provided input data, and detailed reporting.

summed to calculate the power consumption and carbon emissions
for the overall workflow execution.

In Phase 3, the energy consumption and carbon emissions esti-
mated for each task are summarised in a carbon footprint trace file,
alongside a summary of the overall carbon footprint. Providing a
trace file of estimated carbon emissions per task allows users to
identify the most power-hungry tasks and review how these align
with fluctuating CI to consider how overall carbon emissions could
be reduced.

3 Experiments
In this evaluation, we conduct three experiments demonstrating
how we use Ichnos: (1) we estimate the carbon footprint for a
historical Nextflow workflow trace, (2) we estimate the energy
consumption on a compute node where processor frequency was
configured before executing a workflow, and (3) we estimate the
carbon footprint whilst varying the granularity of CI data.

Use of Historical Traces. We used Ichnos to estimate the carbon
footprint of historical executions reported for the FORCE work-
flow3, implemented using Nextflow. Specifically, we estimated the
carbon footprint of the three workflow executions that occurred
on a single node, configuring the yearly average CI in Germany in
2023 as 394𝑔𝐶𝑂2𝑒/𝑘𝑊ℎ. Moreover, we used a linear power model
ranging between 80–135W to estimate energy consumption. The
average energy consumption was 30.51𝑘𝑊ℎ, with CPU energy con-
sumption accounting for 99% of overall energy consumption, with
memory responsible for the remaining 1%. The translated carbon
footprint was 12𝑘𝑔𝐶𝑂2𝑒 .

Varying Processor Frequency Settings. We executed the ampliseq4
workflow, using the full-size real-world dataset provided from nf-
core, a community-curated collection of workflows [3], on a server
equipped with an 8-core Intel i7-10700T CPU and 32GB of mem-
ory. Throughout execution, we monitored energy consumption
using perf, a wrapper for RAPL, and we consider these values to
3https://github.com/CRC-FONDA/FORCE2NXF-Rangeland
4https://nf-co.re/ampliseq/2.11.0

be the ground truth for energy consumed. Additionally, we used
GA as a baseline for estimating the energy consumption, using the
manufacturer-specified TDP of 35W and used the average CPU
utilisation over the workflow execution. When using Ichnos, we
employed a linear power model and measured the power consump-
tion of the server at idle and at 100% utilisation for each processor
frequency (2GHz, 3GHz, 4GHz). The experimental results are out-
lined in Table 1. Compared to RAPL, Ichnos overestimates energy
consumption less than GA, specifically 1.1–2.1x instead of 1.6–5x,
and still enables post-hoc estimation.

Frequency Power Consumption (kWh)
(GHz) Ichnos RAPL GA

2 0.090 0.044 0.234
3 0.097 0.058 0.141
4 0.085 0.076 0.124

Table 1: Monitored power consumption from RAPL com-
pared with estimates using Ichnos and GA.

Varying the Granularity of CI Data. We took the workflow trace
from the ampliseq execution that ran on a single server for 2h 40m
in the evening of September 26th 2024 in Glasgow. The CI fluctua-
tion for South Scotland region of the National Grid5 is depicted in
Figure 2. If this information was not available, we would use the
average CI for the National Grid in 2023, which was 215𝑔𝐶𝑂2𝑒6.
Ichnos estimated that the footprint was 0.33𝑔𝐶𝑂2𝑒 using the region-
specific time-series CI data, while the footprint estimated using the
coarse-grained average would be 18.65𝑔𝐶𝑂2𝑒 - an estimate almost
60x larger. This highlights the potential of using a flexible tool such
as Ichnos, where the user can provide specific high-resolution data
to more accurately estimate the carbon footprint.
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Figure 2: Variable Carbon Intensity in South Scotland on
26/09/2024, with workflow execution highlighted in green.

4 Outlook
In the future, we intend to expand our evaluation with further
workflows, more fine-grained CI data, and a greater variety of
compute resources. In addition, we plan to automate the process
of creating custom power models. Specifically, we will explore
integrating a method for resource-efficient profiling of available
processor configurations, using microbenchmarks and RAPL on
each compute resource, and selecting the power model that best
fits the measured energy consumption.
5https://carbonintensity.org.uk/
6https://app.electricitymaps.com/
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